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Abstract

Analysis of micro-Couette flow and heat transfer is carried out using the Burnett equations. The generalized dif-
ferential quadrature (GDQ) method is used to obtain the numerical solutions. The results show that the effect of the
rarefaction is significant on velocity, temperature, pressure and non-dimensional parameter Pr- E for Kn > 0.1. The
relationships between the shear stress, heat flux and Kn number are obtained. The solution of the Burnett equations is
superior than that of the Navier-Stokes equations at the relatively high Kn number in the slip flow regime. However, it
is impossible to extend the Burnett equations to the entire transition flow regime. © 2001 Elsevier Science Ltd. All

rights reserved.

1. Introduction

Rarefied gas flows are encountered both in low
pressure or vacuum environments and in micron or sub-
micron size geometry at standard atmospheric con-
ditions. The second category includes the application in
micro-electro-mechanical-systems (MEMS). As the
rarefaction increases, the continuum-based solution for
the Boltzman equation may break down. The deviation
of the state of the gas from continuum is measured by
the Knudsen number, which is defined as Kn = /L,
where / is the mean free path of the molecules and L is a
characteristic length scale. For Kn < 1073, the fluid can
be considered as a continuum, the constitutive relations
used in the continuum formulation are valid. For
Kn > 10, it is considered as a free molecular flow, the
Boltzman equation can be simplified into the classical
Knudsen’s model, which is valid for free molecular flow.
In modeling the microscopic gas flow in MEMS, we
mainly refer to those encountered from the slip flow
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regime (1073 < Kn < 0.1) to the transition flow regime
(0.1 < Kn < 10).

The Couette flow problem is one of the simplest
problems in rarefied gas dynamics. However, no exact
solution of the Boltzman equation has been found. The
Chapman-Enskog method [1] provides a solution of the
Boltzman equation for the Couette flow in which the
distribution function f'is perturbed by a small amount
from the equilibrium Maxwellian form. The zeroth-
order solution is the Maxwellian distribution function fj
with the gas being fully described by density p, macro-
scopic velocity vector u, and temperature 7. The viscous
stress tensor g;; and the heat flux vector ¢; vanish in an
equilibrium gas and the conservation equations reduce
to the Euler equations of inviscid fluid flow. The first-
order Chapman-Enskog solution leads to the velocity
distribution function, which enables ¢; and g; to be
written as products of the coefficients 1 and k with the
velocity and temperature gradients. Thus the conserva-
tion equations reduce to the Navier—Stokes equations.
The second-order Chapman—Enskog solution leads to
the Burnett equations.

Since the zeroth-order and first-order Chapman-—
Enskog solutions merely reconcile the molecular and
continuum approaches for small Knudsen flows, it is not
difficult to understand that the deviation from the state
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Nomenclature

C speed of sound (=+/yRT)

Cp specific heat, J/kg K

Eckert number (=u}/(c,(T1 — T5)))
distance between two parallel plates, m
thermal conductivity, W/m K
Knudsen number

characteristic length scale, m

Mach number (=u;/+/yRT})

Prandtl number (= c,u/k)

pressure, Pa

heat flux vector, W/m?

gas constant, J/kg K

temperature, K

velocity component in the x-direction, m/s

SN®S YIEICOIANTE

Greek symbols

Y specific heat ratio

A mean free path, m

I dynamic viscosity, kg/m s

0 density, kg/m?

aij viscous stress tensor

o4, 0r accommodation coefficients

w exponent in viscous-temperature law

Superscripts and subscripts
surface next to the wall
wall

reference state

plate 1

plate 2

non-dimensional variable

R

of gas from continuum gets larger as Knudsen number
increases from the slip flow regime to transition flow
regime. Beskok and Karniadakis [2] suggested that the
continuum approximations that include high-order
modifications of the stress tensor and heat flux term,
may be considered to substitute the Navier—Stokes
equations in the transition flow regime. There is evidence
[3] that use of the Burnett equations extends the validity
of the continuum model to flows that are more rarefied
than those for which the Navier—Stokes equations are
valid. Moreover, studies showed that the Burnett equa-
tions can significantly improve the Navier—Stokes solu-
tions for one-dimensional shock-structure problem and
two-dimensional hypersonic blunt body flows [4-6].
The present study, therefore, intends to obtain
numerical solutions of the Burnett equations for micro-
Couette flow. An accurate numerical scheme, the
generalized differential quadrature (GDQ) [7,8] is
adopted to solve the Burnett equations. Investigation is
focused on the flow and heat transfer behavior of the
Couette flow. Comparisons are made with the solutions
of the Navier-Stokes equations and other available
data. The advantage of using Burnett equations and the
limitation in the transition flow regime are discussed.

2. Steady Couette flow

We consider the flow between two parallel infinite flat
plates (Couette flow), as shown in Fig. 1. The space
between two infinite parallel plates is separated by a
distance H. The lower plate (plate 1) at y = 0 moves with
a constant velocity u; and sets the fluid particles moving
in the direction parallel to the plates while the upper
plate (plate 2) remains stationary. The flow is considered
steady, one-dimensional and compressible. The govern-

ing equations of the Navier—Stokes and the Burnett
equations for the Couette flow are written as follows:

d 012
— | pton | =0, )
us;y + q>

where u is velocity in x direction, and p is pressure. g;;
and ¢; are the deviatorial pressure tensor and heat flux,

respectively.
For the Navier—Stokes equations, the expression of
o, and ¢; are given, o, = —uu', 0 =0, g, = —kT",

where p is viscosity coefficient, k is thermal conductivity
of the gas, and T is temperature. The superscript ' rep-
resents the first derivative with respect to y.

For the Burnett equations, oj, and ¢, for the steady
Couette flow are the same as those of the Navier-Stokes
equations, but

2 RT RT
Gy = /l_(%u/z + o RT" + ag— p" + ayy —2,0’2
p p p

R R
+0€125T"+0€13TT,2)7 (2)

//////////4‘ /
Plate 2

Plate 1

E——
u;

Fig. 1. Couette flow coordinate system.
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where p is the density. The coefficients for Maxwellian
gas are og = —0.667, o7 = 0.667, oy = —1.333, o) =
1.333, o, = —1.333, o435 = 2.0. The superscripts ” rep-
resents the second derivative with respect to y. For an
ideal gas, the equation of state is given by

p = pRT. 3)

From above equations, we can see that the Burnett
equations have high-order modification of stress tensor
and heat flux terms.

The variables in the equations governing the Couette
flow are non-dimensionalized as follows. The reference
variables are chosen according to [9]

-y - u 7 T 5 0

Y == u= ’ =7 =
H VRT To Po

[3:£ 6= i q_:L ﬁ:ﬂ
' pRTT T p(RTy) o'

where the subscript 0 denotes in the reference state.
After the non-dimensionlization, the Navier—Stokes
equations become

d
dp

d ~~ Y ~ar |

35 (5890 5=y = ©

where the Pr is the Prandtl number and y is the specific
heat ratio. For the Burnett equations, the y-momentum
equation is different from Eq. (5), and is written as

~ 2:&2 ~12 T~// T~/7
p+Kn0§ AU +O(9;p +a111§p‘+(a12—2a9—2a“)

—_—

- 1 -
X =T'p + (o3 + 209 + 01 —alz)?le

hS]

+ (a7 — ) T"| = B, ()

where P, is an integration constant and Kn, is the re-
duced Knudsen number, which is defined with reference
variables as

Kl’l() (8)

Ho

poVRTLH .

Two types of boundary conditions, namely non-slip
wall and slip wall conditions are imposed in the calcu-
lation. For the non-slip wall, the fluid next to the wall
moves with the plate, and the temperature takes on the
prescribed wall temperature.

For the slip wall, the following first-order boundary
conditions in non-dimensional form (Maxwell/Smolu-

chowski slip conditions) are used. The effects of thermal

creep and quadratical variation with Kn are not in-
cluded.

. 2-0, /n, VTi(da
Us — Uy = . EKnO ﬁ (d_j;)j (9)

T e P+ DV 5 dp

T L e R 7% ﬁﬁ<d—T> . (10)

S
To carry out the numerical simulation, we assume that
(1) the accommodation coefficients for # and 7T are
o, = 1 and a7 = 1, respectively; (2) the gas is the Max-
well molecular, for which the exponent @ in the viscos-
ity-temperature law (i = 7) is 1, Prandtl number (Pr) is
2/3, and the ratio of specific heat y is 5/3; (3) the integral
constant in Eq. (8) is Py = 1.

The numerical solutions of the Burnett equations in
the continuum transitions regime have not been possible
for flow with very fine grids since the Burnett equations
are unstable to the disturbances of small wavelength
[10]. An accurate numerical method with a possible
coarse grid system is desired. Therefore, we selected the
GDQ method [7,8] to solve the Burnett equations. The
GDQ method discretizes spatial derivatives by a
weighted linear sum of all the functional values in the
whole domain. The GDQ method can be considered as
the highest order finite difference scheme for a domain
with a given mesh. Application of both GDQ and
Chebyshev pseudo-spectral methods provides the same
weighting coefficients for the first derivative when the
grid points are chosen as the roots of the Nth order
Chebyshev polynomial for the both methods.

Egs. (4)—(7) are numerically solved by the GDQ
method. Thirteen grid points are used along the y-di-
rection. A grid refinement study has been carried out.
The results show that 13 meshes yield an accurate in-
dependent solution. The convergence criterion for the
simulation is based on the residual value for the conti-
nuity equation. The criterion ensures that the maximum
residual ‘Res”“‘ <1074,

i
J max

3. Results and discussions
3.1. Flow analysis

To examine the flow behavior, the velocity of moving
plate is set at i#; = 1, the temperatures at stationary and
moving plate are 7} = 7> = 1, and the pressures are
p, =p, = 1. The velocity, temperature and pressure
distributions along the y-direction of the parallel plates
are obtained.

Fig. 2 shows the solutions of velocity, temperature
and pressure for the non-slip boundary condition. It is
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Fig. 2. Numerical solution for non-slip wall conditions: (a) velocity i; (b) temperature T; (c) pressure p.

noted that when the non-slip condition is imposed, the
Navier—Stokes equations and the Burnett equations at
Kn=0, Kn=0.01 and Kn =0.1 yield the same solu-
tions for 7 and T, due to the decoupled relations between
i, T and p. But the pressure is different. For the Navier—
Stokes equations, the pressure is a constant, the fluid
motion is set by simple shear flow due to viscosity, and
no pressure gradient is involved in the direction of mo-
tion. It is also a constant along the y-direction. But the
Burnett equations yield the pressure gradient in the y-
direction due to the high-order modification. There are
wall layers near both upper and lower plates with the
thickness estimated to be of the order of Kn, because the
highest derivative term is multiplied by Kn?. As indicated
in Fig. 3, the wall layer is a very thin layer (about one to
a few mean free paths) next to the wall, and is also
known as the Knudsen layer. The wall layers will not
vanish as long as Kn number is not zero.

The solutions of velocity, temperature and pressure
for the Burnett equations with the first-order slip
boundary conditions are given in Fig. 4. In Fig. 4(a), the
velocity at the lower wall is lagged behind the moving
plate, while the velocity at the upper wall is stretched
due to the slip effect. But the velocity profile is still kept
in linear. The temperature in slip flow is higher than that
in non-slip flow as indicated in Fig. 4(b). The pressure
profile Fig. 4(c) has the same trend as that in non-slip

condition. Overall, when Kn = 0.01, the difference in the
velocity, temperature and pressure distributions with
those at Kn = 0 is very limited. As the Knudsen number
increases to 0.1, the difference becomes larger.

i Prandtl layer
y

Knudsen layer

i |

<

iy (x,0)

u (x,0)

Fig. 3. Near-wall velocity distribution.
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Fig. 4. Numerical solutions for slip wall conditions: (a) velocity i; (b) temperature 7; (c) pressure p.

To examine the performance of the Burnett equa-
tions, Fig. 5 shows relationship between the non-di-
mensional shear stress and the Knudsen number at
M = 3, at which the solution of the six-moment method
by Liu and Lees [11] and the solution of direct simula-
tion by Nanbu [12] were available for comparison.
M (= u /\/yRT)) is the wall Mach number. In Figs. 5
and 9 shown later, the results of the Navier—Stokes
equations and the Burnett equations are all obtained

10°

Free molecular limit \

==

g

&

S

S

S
Burnett
N-S

77777 Liu & Lees
o Nanbu
10 -
10® 10" 10°

Kn

Fig. 5. Shear stress as a function of Kn for M = 3.

with velocity slip and temperature jump conditions at
different Kn numbers. It is clear that the Navier-Stokes
equations are only accurate in the region where
Kn < 0.04. Similar to the solution of the six-moment
method, the result of the Burnett equations is close to
the solution of the direct simulation in the region up to
about Kn = 0.1. However, we were not able to obtain
solutions for the Burnett equations with the first-order
slip boundary conditions after Knudsen number reaches
0.18. Failed in many attempts to try possible relaxation
on the numerical scheme, we believed that the failure is
not due to the numerical flaw but the physical one. The
inability of the continuum approaches with slip bound-
ary conditions in predicting flow in the transition flow
regime is attributed to the physical changes in the
Knudsen layer. From Fig. 3, it is not difficult to imagine
that the error of using the slip velocity to approximate
the real velocity at the wall u,, (x,0) would significantly
increase as the Knudsen layer becomes comparable thick
to the distance between plates 1 and 2. As indicated in
Fig. 5, the gradient of the shear stress becomes non-
linear after the Knudsen number reaches 0.04, and the
shear stress approaches asymptotically to the free
molecular limit as Kn — oo. Hence, the assumption on
the Knudsen number as a linear coefficient of the slip
velocity and temperature jump in Egs. (9) and (10) is
only valid for the Knudsen number less than 0.04.
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Although the Burnett equations can improve the pre-
diction of the Navier—Stokes equations in the region
from Kn = 0.04 to about Kn = 0.1, it is impossible to
further extend the Burnett equations to the entire tran-
sition flow region. In fact, even if the second-order slip
boundary condition developed by Schamberg [13] are
used, the numerical simulation with aerodynamic rar-
efied flow [6] showed that Scamberg’s boundary condi-
tions were inaccurate for Kn > 0.2.

3.2. Heat transfer

Heat transfer is an important issue in the Couette
flow. Since viscous energy dissipation may become con-
siderable even at moderate flow velocities, the tempera-
ture rise in the fluid and the amount of heat transfer
through the plates are of interest. To examine the effect of
the rarefaction on heating of the walls, three different
temperature ratios of lower plate to upper plate are
prescribed at 1, 2, and 20, respectively. Fig. 6 shows the
temperature variations with the distance between the
upper and lower plates. The slip velocity and temperature
jump conditions are imposed to the Burnett equations,
except for the case Kn = 0. From Figs. 6(a) and (b), it is
observed that when the temperature ratio is small, the
deviation of the case Kn =0 from the cases Kn = 0.01

(a) /T,

and Kn = 0.1 is relatively small. The effect of rarefaction
on the heating is insignificant. At large temperature ratio,
however, the temperature jump becomes distinguish at
higher Knudsen numbers as shown in Fig. 6(c).

In classical heat transfer, the direction of heat flow at
the lower plate, that is, whether the heat flow is into the
fluid or the wall for 7} > 75, depends on the magnitude of
the non-dimensional parameter Pr - E [14], where Pr is the
Prandtl number and E is the Eckert number. The rela-
tionship between the non-dimensional temperature and
parameter Pr- E is shown in Fig. 7. For Pr-E > 2, the
heat flows in the negative y-direction, even through
the lower plate is at a higher temperature than that of the
upper plate. For Pr- E < 2, the heat flows in the positive
direction. For Pr - E = 2, there is no heat flow at the lower
wall. From Fig. 8, it is interesting to see that the non-
dimensional parameter Pr - E is deviated from the value 2,
at which the heat flow is set to be zero at the lower wall, as
the rarefaction increases. Subsequently, the value for
Pr - Ebecomes 2.008 at Kn = 0.01,2.011 at Kn = 0.05and
2.1505 at Kn = 0.1. This implies that to keep the lower
wall not heated, the moving velocity of the plate must
increase as the gaseous flow becomes more rarefied.
Compared with the results of the Navier—Stokes equa-
tions, there are temperature jumps at the lower and upper
walls in Fig. 8. With the increase of the Knudsen number,

(b) T,

Fig. 6. Effect of rarefaction on heating at different temperature ratios: (a) 7;/T> = 1; (b) T, /T» = 2; (¢) Ty /T» = 20.
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Fig. 7. Non-dimensional temperature distribution (Navier—
Stokes equations with non-slip wall conditions, Kn = 0).

the temperature jump becomes pronounced. Taking the
curve of Pr- E =1 as an example, the temperature jump

4145

at the lower wall is 0.004 at Kn = 0.001, 0.017 at
Kn = 0.05 and 0.028 at Kn = 0.1. When the non-dimen-
sional parameter Pr- E increases from 1 to 4, the tem-
perature jump experiences the change from negative to
positive. For example, in Fig. 7(c), the temperature is
unity at Pr- E = 2.1505, if Pr- E < 2.1505, the tempera-
ture jump is negative, while for Pr-E > 2.1505, the
temperature jump becomes positive.

Corresponding to Fig. 5, the non-dimensional heat
flux is plotted in Fig. 9 together with the solutions of six-
moment method [11] and the direct simulation [12]. The
prediction of the Navier-Stokes equations is only good
in the region where Kn < 0.02. The Burnett equations
extend the region to about Kn = 0.1, but fail to predict
the heat flux as the Knudsen number increases to 0.18.
The direct simulation result [12] shows that heat flux
reaches the peak at Kn = 0.2, and it decreases asymp-
totically to zero as Kn — oo. This indicates that the
assumption on the Knudsen number as the coefficient of
the slip velocity and temperature jump is only valid
when the Knudsen number is sufficient small. As

1 1
0.8} 0.8}
0.6} _ 0.6}
T =
.\a \.\ e
0.4} 0.4}
0.2} | — PreE=2.008 \\ /". 02} | —— PrE=2.011 \\ ((
———-—- PrE=4 AN /_/ ———m—— PrE=4 Y //’
O L L ! ! Z 0 L L L L ! 4 L
0 02 04 06 08 1 1.2 0 02 04 06 08 1 12 14
(a) (T-T)NT-T>) (b) (T-T)AT;-T>)
1
08¢}
06} N
B \
04r¢ N
!
!
!
0.2¢ PrE=2.1505 | ;
——m—— - Pre=4 ) /
0 1 1 1 1 \\ /I
0 02 04 06 08 1 1.2 14
(c) (TF-TIHNT-T>)

Fig. 8. Non-dimensional temperature distribution (Burnett equations with slip wall conditions): (a) Kn = 0.01; (b) Kn = 0.05; (c)

Kn=0.1.
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Fig. 9. Heat flux as a function of Kn for M = 3.

explained previously, the failure of the Burnett equa-
tions is due to the limitation of the proportional rela-
tionship between temperature jump and the Knudsen
number.

4. Conclusions

Numerical solutions of the Burnett equations for
Couette flow have been obtained using the GDQ method.
The GDQ method provides us a simple but accurate nu-
merical solution to deal with the microscopic Couette flow
using the Burnett equations where the higher order of the
Chapman-Enskog expansion is required.

The Characteristics of the gaseous Couette flow and
heat transfer are analyzed. The study shows that there is
significant effect of rarefaction on the distribution of
velocity, temperature and pressure when the flow enters
the transition regime for isothermal wall or when the
temperature ratio is high for non-isothermal wall. The
value of non-dimensional parameter Pr-E, at which
heat flow becomes zero at the heated wall, is no longer a
constant in micro-Couette flow. It increases as the
Knudsen number becomes larger.

The solution of the Burnett equation is superior than
that of the Navier-Stokes equations at relatively high
Knudsen number in the slip flow regime. However, it is
impossible for the Burnett equation to be extended to
the entire transition flow regime, as long as the as-
sumption on the Knudsen number as the coefficient of
the slip velocity and temperature jump is made.
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